

Prepreg Technology at Polymer Engineering

Development of modern prepreg materials

Department of Polymer Engineering / Professor Dr.-Ing. V. Altstädt / www.polymer-engineering.de

Prepreg Technologies

Applications of Prepreg Materials - Overview

/2/

Applications of Prepreg Materials

Airbus, JEC Composites

Aerospace - Structural Components

Applications of Prepreg Materials

Automotive: Snap-Curing Prepregs

	curing temp / °C	curing time / min	cylce time / min	quantity / pcs.
press moulding	150 °C	2-3 min	3 min	> 50.000
resin transfer moulding	120 °C	2-5 min	>5 min	< 50.000

Prepreg Technology at Polymer Engineering

Prepreg Processing Chain at Polymer Engineering

Resin Formulation

Resin Development for Prepreg Processes

Challenges for novel prepreg resin systems

- Optimize tack properties for automated placement
- Fast curing at moderate temperatures
- Out of autoclave curing
- Optimisation of cure induced warpage and shrinkage
- Functionalities:
 - Fire behaviour
 - Electrical properties
 - Barrier properties
- Improved Toughness

Resin Formulation

Equipment for Resin Formulation

- Chemistry lab for formulation of thermoset resins
 - Speed Mixer
 - Curing Ovens
 - Vacuum Mixing Unit
- Dispersion of fillers in nano- and micro scale
 - High-Pressure Disperser
 - Ultasound Dispersing
- Determination of curing kinetics and decomposition behaviour:
 - (High pressure) DSC
 - Thermogravimetric Analyzer
 - Rheology Lab

Pilot Prepreg Plant

Pilot Prepreg Plant

Specification:

- Working width: max. 30 cm
- Reinforcements: up to 32 UD-Rovings or textile fabric
- Matrix systems: solvent free resin systems app. 10 to 50.000 mPas
- Line speed: 1 to 10 m/min
- Dimensions: app. 16.5 m x 2 m x 2.5 m (l x w x h)

Pilot Prepreg Plant - Technical Details

Flexible coating unit

Prepreg Processing - In-line Impregnation

Direct in-line impregnation of UD-fibres or low aerial weight woven fabrics.

Prepreg Processing - Off-line Impregnation

Step 1: Resin film production

Maximum flexibility - tailoring prepregs

In-line impregnation (possibilities) - exemplary:

Off-line impregnation (possibilities) - exemplary:

Prepreg Characterization

Characterization of Prepreg Properties

- Aerial Weight
- Resin Content
- Resin Flow (acc. to DIN, ASTM and IPC standards)
- State of Impregnation
- Tack properties

Prepreg Characterization

Characterisation of Tack Properties

Tack is a major material property for automated as well as for manual fibre placement applications.

/ 16 /

Laminate Production

Out of Autoclave Curing

Hydraulic Heating Press

- Press area: 60 x 60 cm²
- Press capacity: 1000 kN
- Temperature range: 25 to 250 °C

Non-destructive Testing

Ultrasonic Testing

- Quality Assurance
- B- and C-Scan Mode
- 3D Visualization

Micro-CT

- max. resolution: $5 \mu m$
- Porosity
- Fibre wetting

Mechanical Testing Center

/ 19 /

Composite Testing - Mechanical Characterisation

Impact

Compression after impact

ILSS

Interlaminar fracture toughness mode I & II

Dynamic Testing of Composites

7 servohydraulic testing machines. Maximum dynamic load: 40 kN

Prepreg Technology at Polymer Engineering

Prepreg Processing Chain at Polymer Engineering

Prepreg Technology at Polymer Engineering

How to Cooperate?

- Public funded research projects in coopreration with industrial partners
- Direct industrial cooperation
- Material development
- Evaluation of processability
- Production of sample material
- ...

Contact:

Martin Demleitner Thermosets and Composites

University of Bayreuth Department of Polymer Engineering Universitätsstr. 30 95447 Bayreuth Germany

Phone: +49 (921) 55 - 7476 Mail: martin.demleitner@uni-bayreuth.de

Chair: *Prof. Dr.-Ing. Volker Altstädt* http://www.polymer-engineering.de

